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THERMAL RESISTANCE OF A SYSTEM OF PARALLELEPIPEDS

G. N. Dul'nev and £E. I. Ermolina UDC 536.248.1

A method is proposed for calculating the thermal resistance of a system of parallelepipeds with
a local source which is encountered in the analysis of the thermal conditions in hybrid integral
microcircuits.

Many applied problems, particularly problems associated with the analysis of thermal conditions in mi-
croelectronic devices, reduce to a thermal model which is a "pyramid” of n unlike parallelepipeds of different
sizes (Fig. la). In the actual construction, the parallelepipeds forming the pyramid are the backing, "chips,"
adhesive layer, switching plate, base, etc. [1]. There are rectangular, flat energy sources on the upper sur-
face of the first parallelepiped. Thermal contact between adjacent surfaces is assumed ideal. Heat dissipation
from the lower surface of the n-th parallelepiped obeys Newton's law and is characterized by a heat-exchange
coefficient a; there is no heat exchange at the lower surfaces.

The exact mathematical description of the temperature field in such a system is rather complex and
hardly can be used for practical purposes. Calculation of the thermal resistance from the source to the en-
vironment is usually based on the construction of an equivalent circuit representing a chain of series-con~
nected thermal resistances [1-4]. It is further assumed that the interfaces are isothermal.

We analyzed the possibility of such an approach for the following problem: a bounded cylinder with a local
energy source on one end and boundary conditions of the first and third kind on the opposite end. The thermal
resistance from the source to the environment was calculated in the two cases. A comparison of the results
showed that the values of the thermal resistance can differ by almost a factor of two for given values of the
Biot number and given ratios of cylinder and source sizes. Therefore, determination of the thermal resistance
of this system must be carried out with consideration of heat-transfer conditions at the heat-releasing sur-
faces of each body. A method is proposed below for which sequential application provides an accuracy suffi-
cient for practical purposes without significant complication of the computational process.

Method for Determination of Thermal Resistance

We shall show that for this system of bodies, the problem of determining the total thermal resistance
from energy source to environment can be reduced to a problem of determining the thermal resistance of the
first parallelepiped, the heat-transfer conditions at the lower boundary of which are characterized by an
equivalent coefficient o, that includes the effect of all the other parallelepipeds (Fig. lc).

To determine the value of oy, we consider successively the temperature field of each i~th parallelepiped,
for which the thermal model can be represented in the following manner: on the upper face of the parallelepiped,
there is a flat energy source with an intensity p and area Sj-q; on the lower surface, heat transfer is char-
acterized by a heat-transfer coefficient aj, which takes into account the effect of all the remaining (n — i)
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parzllelepipeds with the other surfaces thermally insulated (Fig. 1b).

For the lowest parallelepiped (i = n), the quantity «, is known and characterizes the actual conditions of
heat exchange with the environment, o = o. We define the thermal resistance of the n-th parallelepiped from
its contact surface to the environment in the following manner:

Rn =" ( Xy ns Sn’ S ) (1)

Here v, is a coefficient which takes into account spreading of the thermal flux over the thickness of the paral-
lelepiped.

To determine a4, the equivalent coefficient of heat exchange for the (n — 1)-th parallelepiped, we repre-
sent the quantity Ry in the form

Re= s @)

We then have from Egs. (1) and 2)

f/_n_ = .
Y vy (@, By Sy Sasy) ©)
Now considering the (n —1)-th parallelepiped, we express its thermal resistance similarly through the
corresponding geometric parameters, coefficient of thermal conductivity A,—y, and coefficient of heat exchange
ap-1. Repeating this operation successively for each i-th parallelepiped, we obtain

o - Pia 4)
‘ Ay Fion @ e Sias S}
h; ’
R, = v (g, By S Sily) ®)

/zzl

In the final analysis, we obtain the equivalent heat-exchange coefficient oy at the boundary between the
first and second parallelepipeds (Fig. lc). Then the thermal resistance from the source on the upper surface
of the first parallelepiped to the environment has the form

h
R1= 7\,; 'Vl (O‘p hl, Slv SS) (6)

1~

Analytic expressions for the determination of the quantities v; can be obtained by both exact [5] and ap-
proximate [6, 7] metheds. Furthermore, it is usually assumed that the thermal flux density in the region oc-
cupied by the source is uniformly distributed, i.e., q = const.

In this problem, the assumption q = const can be considered valid only for the top parallelepiped, on the
surface of which the actual sources are located. For the remaining parallelepipeds, the thermal flux density
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Fig. 2, Thermal flux density distribution at contact surfaces.

Fig. 3. Form of the function ¢(p/ai) for various parameter val-
ues: 1) 7j / Li = 0.5; 2) 0.3; 3) 0.1; solid curve, Bij = 0.2, hi/

L; =0.05;dashed curve, Bij= 0.2, hj/ L; = 0.1; dashed-dot curve,
Bij = 0.01, h; /Lj = 0.1.

distribution at the contact surface is nonuniform, q, y), and depends on heat-exchange conditions and the
ratio of parallelepiped sizes. In order to use the analytic expressions for v; obtained for q = const, therefore,
it is necessary to check the validity of this condition for the calculation of the thermal resistance of each i-th
parallelepiped in this system. This check must include the following: determination of the nature of the dis-
tribution q &, y) as a function of the Biot number and of the ratio of parallelepiped sizes; a quantitative evalua-
tion of the nonuniformity of the thermal flux density distribution; and an evaluation of the error in the deter-
mination of the thermal resistance of a parallelepiped as a function of the nonuniformity index selected.

Evaluation of Nonuniformity of Thermal Flux Density

We consider the thermal model of the i~th parallelepiped (Fig. 1b), We first assume that the density
of the energy source located on the upper surface is constant and equal to g,. We investigate the nature of the
thermal flux density distribution q(x, y) at the lower surface (Fig. 2) on the basis of the Biot number Bij and
the ratio of source and parallelepiped sizes. We represent the dependence q{x, y) in the following form:

q(x, y) = qopr (%, B)- (7

In accordance with the principle of local effect, we make an approximate substitution for the functions of two
variables q(x, y) and u (x, y) with functions of a single variable,

g% P =q@) pix, ) mpeE; o=V 2+ 4~

Considering, in particular, a square source of length /; on a side located in the center of the upper face of a
square plate of length Lj on a side and thickness hj, we represent the function u(p) in the dimensionless form

M(L)=u(0)q><i), L} = na;. (8)
a; a;
Here ¢(p/aji) is a normalized function which determines the nature of the thermal flux density distribution on
the lower surface; u(0) is the value of p at the source center p = 0. The function ¢(p/ai) is shown in Fig. 3.
The curves in this figure were obtained by exact solution of the appropriate problem of thermal conductivity
for various individual parameter ratios hj /Ly, i/ Li, and Bij.

The nonuniformity in thermal flux distribution can be quantitatively evaluated by various methods. The
most general results are obtained if the following relation is selected as the nonuniformity criterion:

n=2 . (9)
4,

Here qg is the mean surface thermal flux density

g

e
g= —s fq(p) 2rupdp,
a;

z




Fig. 4 Fig. 5

Fig. 4. Dependence of nonuniformity criterion » on various fac-
tors: 1) Bij = 0.01; 2) 0.2; solid curve, hj /T = 0.2; dashed-dot
curve, hj/Lj = 0.1; dashed curve, hj/Lj = 0.05.

Fig. 5. Dependence of thermal resistance of a parallelepiped on
nonuniformity of thermal flux in the source region: 1) Bi; = 0~
0.1, hi/ I = 0.05; 2) Bij = 10; dashed curve, hj/Lj = 0.2;
dashed-dot curve, h; / Lj = 0.1; solid curve, hj/Lj = 0.05.

and q, is the thermal flux density averaged over the radius

aj

Keeping Eqgs. (7) and (8) in mind, we obtain

n=2— X ‘ 10)

Figure 4 shows values of the criterion n obtained from Eq. (10) by numerical integration of the functions ¢(p/aj)
(Fig.3) and co(o/ai)(p/ai) for the following parameter ranges:Ij/Li= 0-1;hj/Lj=0-0.2; Bij = 0-0.2.

Thermal Resistance as a Function of the Parameter p

We now consider the effect of nonuniformity in the thermal flux distribution from the source on the ther-
mal resistance of the parallelepiped, We assume there is a source on the upper face of the i-th parallelepiped
with a nonuniform thermal flux density which is characterized by the relation shown in Fig. 3. We point out that
this relation is a step function consisting of m steps as shown in Fig. 3. Then the energy source can be repre-
sented as a sum of m sources of different sizes Ij /Lj and a uniform density a5, the value of which is

-Ch' == gyl (0) [(Pj (ai \) — i (f‘)] . ai)

12 4

The mean surface heating of the region S; occupied by each of the j sources is Jjs. The actual energy source
occupies the area Sy corresponding to j = m. Each of the j sources increases the mean heating of the actual
area Sy by djg = 55 /Sm. Then the mean surface heating by the source, g, on the basis of the superposition
principle is

m

S,
O, = v LFR S—’ . 12)
!.=1 m
By definition, the value of &g is
“}Js - qujRj‘ (13)



TABLE 1. Input Data for the Calculation of the Thermal Resistance
of a System of Cylinders

Cylinder number 1

&
w

'
(5

Coefficient of thermal| |
conductivity, Aj,
Tt K ty

Height |
hi, m 0,2.10-3 0,3-10-3 i 0,4-10-3 0,5.10-3 0,5.10-3

Diameter ) i
204, m 4.10-3 6.10-% ; 8.10-3 10.10-% 10.10-3

where the thermal resistance Rj on the basis of Eq. (5) has the form

Vije 14)

Ryj=—-= 15

2 P

We compare the value of the thermal resistance Ry for the i-th parallelepiped as determined from Eq.
(15) with the value of the thermal resistance Rj for the same parallelepiped with a uniform thermal flux dis-
tribution as determined from Eq. (5). Keeping Egs. (11)-(15) in mind and carrying out the necessary algebraic

transformations, we finally obtain
D) .(’_P“)d N _p_) Sivis
H s a; Fi-1 a; Sm'\’im

RNi _ =1 g ) (16)

R N [o0 ()~ [ 2)] &
. “Na, T g, S,

=1

The quantity Ryi/Rj characterizes the effect of thermal flux nonuniformity on the thermal resistance of a
parallelepiped. Figure 5 shows the dependence of the ratio RNi/R; on the value of the criterion n for various
values of the other parameters hi/ Lj, 1j / Lj, and Bij.

Analysis of the results makes possible the following conclusions.

1. The thermal resistance depends only on the criterion n in the region hj/Lj > 0.05, Bij < 0.1; the
thermal resistance depends on n and on Bij in the region hj /Lij > 0.2, Bij > 0.1; the thermal resistance de-
pends on Bij, 7, and hj / L for very small relative thickness of a parallelepiped hj/Lj < 0.05). Consequently,
one can pick out a considerable range of parameters in which the thermal resistance depends only on the

“criteria 7 and Bi;» which confirm the advisability of selecting the criterion n for evaluation of thermal flux
nonuniformity in the source region.

2. The effect of thermal flux nonuniformity of contact surfaces can be neglected for n > 0.6. The error
in the determination of the thermal resistance of an individual parallelepiped does not exceed 25, which is
acceptable in many cases.

From Figs. 4 and 5, one can estimate the value of the correction RNi /Rj without resorting to a calcula-
tion of the thermal flux distribution at contact surfaces and take it into account in the calculation of the total
thermal resistance of a system of bodies.

Evaluation of Accuracy of the Method

It is practical to compare calculated results for the thermal resistance of a system of bodies obtained
by the proposed method with calculated results obtained from the method of thermal resistances connected in
series and also with similar results obtained by a numerical method. The capabilities of an average type of
computer do not permit numerical calculation of the three-dimensional temperature field for such complex -
systems. Such a comparison was therefore performed for a system of bodies of cylindrical shape having
thermophysical properties and dimensions given in Table 1. The ratios of sizes and of coefficients of thermal

584



conductivity were selected to be similar to those encountered in actual microcircuits. The radius of the energy
source on the upper surface of the first cylinder was 1-107° m and the specific power was q, = 2-10° W/m?,

The calculation determined the heat of the center of the source with respect to the lower surface of the
last cylinder, for which the temperature field can be assumed uniform (A; = 20 W/m - °K). A comparison of the
values for the heating gives the following results: numerical method, 108.9°; proposed method including ther-
mal flux nonuniformity at contact surfaces, 109°% proposed method without inclusion of nonuniformity, 112°;
method of series-connected thermal resistances, 49°.

A comparison of the results shows that calculation by the proposed method can be made in some cases
without consideration of thermal flux nonuniformity at contact surfaces, which leads to smaller errors than the
assumption of isothermicity at those surfaces. In addition, an evaluation of the accuracy of the method was
made on the basis of a comparison of the results of an experimental determination and of a calculation by the
proposed method of the thermal resistance of actual microcircuits. The divergence of the results did not ex-
ceed the spread in the value of the thermal resistance of a microcircuit caused by instability in technical pro-
cedures.

NOTATION

P, power of energy source; q, flux density; A, coefficient of thermal conductivity of the i-th paral-
lelepiped; S;, Si_q, areas of the i-th and (I —1)-th parallelepipeds; h;, height of the i-th parallelepiped; Bij =
aihi /Ay, Blot number of the i-th parallelepiped; t,, ambient temperature; 4 =t —tq, heating.
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THEORY OF NEW KINETIC METHODS OF MEASURING THE
MASS-TRANSFER PROPERTIES OF DISPERSED SOLIDS

V. M. Kazanskii UDC 66.047.35

The solution of the generalized mass-transfer equations with variable coefficients is used as a
basis for developing the theory of various new methods of determining the transfer character-
istics of dispersed solids with finite moisture contents.

Methods of experimentally determining the mass-transfer characteristics of highly dispersed, moisture-
containing solids employed at the present time are subject to a number of fundamental shortcomings which
greatly reduce the accuracy and reliability of the results obtained. Practically all the methods of measuring
mass-transfer characteristics are analogous to the corresponding heat-transfer methods. At the same time,
mass transfer differs very considerably from heat transfer, despite the identical nature of the transfer equa-
tions. Thus, the use of any particular solution of the heat-conduction equation as a basis for the development
of methods of determining mass-transfer coefficients is frequently unreliable, even though the corresponding
thermophysical procedure has been thoroughly vindicated.
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